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2N. (Continued)

substorm plasmas and combinations of monoenergetic beams is compared

istics for ttoe plasmas and a few beams specified by the moment matching
techniques.

qualitatively using a simple model. We find similar charging character-
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SECTION 1
INTRODUCTION

Interactions between the plasmas in space and the surface and various subsystems
of spacecraft are very complicated and have been the subject of considerable study over

(1,2,3) for example, of a spacceraft's

the past several vears. FEleetrostatic charging,
surface can result in discharges which ecan cause eleetromagnetic interference,
degracdation of surface materials, and failures of sensitive components. Techniques to
influence plasma-spacecraft interactions, such as on-board plasma gencrators and

(3)

conductive coatings for dieleetrics, are also being actively studied.

The plasma environment of space can be partially simulated in the laboratory
using low-temperature plasma generators for studies of phenomena in the ionosphere and
low-earth-orbit or combinations of electron and ion beams to simulate the conditions in

(e.g., 4)

high-altitude orbits. Several small space plasma simulation laboratories and a

few large-scale facilities are in operatlon( ) or being pmnned.(m Laboratorv simulation,
however, iS necessarily only a partial re-creation of the aetual environment to which ¢

spacecraft is subjected.

.

The selcction of the plasma generators or beams to simulate the space
environment is now based on intuitive as well as seientifie, engineering, and economic
grounds. The simulation often represents only the most extreme case expectled for a

given spacecraft component. There are prescntly no established teehniques for selecting

a laboratory plasma environment to simulate the measured or postulated properties of

plasmas in space.

The object of this work is to investigate some mathematical techniques which
could be used to choose the parameters of monocnergetic beams to simulate space
plasmas. The moderate temperature plasmas of geomagnetic substorms serve as
examples for simulation, since they are known to cause eleetrostatic charging on
geosynchronous satcllites. The multikiloeleetronvolt encrgies and densities of a few
particles per cubic centimeter require their simulation by monoenecrgetic beams rather

than by low-cnergy plasmas with a continuous cnergy spectrum,




SECTION 2
BEAM SELECTION 'TECHNIQUIES

2.1 GENERAL

The plasma environment of space is charaeterized by a wide varicty of particle
energies, fluxes, species, and speetral shapes. The particle spectra vary with position in
space, time, and solar activily. Models of the environment have been developed in
various degrees of complexity, ranging from the definition of average plasma properties
such as density and temperature at a given altitude to presentations of detailed spectra

of "tyvpical” plasma injection events recorded by instrumented satellites.

A spaee simulation facility is necessarily limited by engineering considerations to
providing  a few charged particle beams to simulate spacecraft-environment
interaction<. Presently, the parameters of the electron and ion sources are selected to
provide only a rough simulation of the plasma environment. The energy and current
densities provided are often chosen to represent the most extreme case envisioned for a
given spaeeeraft or component.  Apparently, no quantitative techniques now exist to
measure the "quality” of a beam simulation; and no methodology has been developed to
speeify the number, relative current densities, and relative energies of a set of chuarged

particle beams designed to simulate a given plasma speetrum.

In this seetion we examine teehniques which can be used to speeify the parameters
of multiple monocnergetie charged partiele beams which would provide a mathematically
correet  and  physically plausible simulation of a given plasma  cenvironment,  The
techniques are based on the piecewise reproduction of the shape of distributed energy
speetra or by matehing various averages of the veloeity distribution funetions by the

monocnergretie beams.

In this study we assume that the space plasma to be simulated is of bigh enough
enerery and low enougth density so that colleetive effects in the plasma can be neglected.
More preeisely, the Debye dength of the plasma is considerably greater than tvpical
dimepsions of a spanecernft. Thin assumption is justified for the space environment
outside the plasmasphere during geomagnetie substorms when strong spaceeraft charging

events are recorded.

o




2.2 PIECEWISE SPECTRAL REPRODUCTION

The simplest and most obvious method to simulate a distributed speetrum is to
break the spectrum into several bands and provide monoenergetic beams with appropriate
currents and energies to reproduce the distribution in a "piecewise”" manner. A very
close reproduction of the distributed spectrum ean be made in this way, provided there is

a sufficient number of available beams.

With a limited number of beams, a problem arises on the choice of the energy
boundaries between the parts of the spectrum to be simulated. Possible choices include
fractions or multiples of the average encrgy (temperature) or velocity, or boundaries
which divide the particle flux into equal fractions of the total flux. A given spectrum
may also be divided to account for particular features, such as a high energyv "tail" of the

distribution function.

The principles involved in piecewise spectral reproduction can be illustrated by

considering a Maxwellian distribution of particle energies,

Y - : - B
£ = = oaen TV BT L (‘ L".T) (2-1)
- o

where n is the number density, kT is the temperature, and b is the kinetie energy of the

particles.

The differential energy spectrum of current density crossing an arbitrary surface

is given by
dj , I 13
—_—= = — o eXp (- - ¢
dat Yo TToae ( k't (2-2)
where

5 . :;»n (i‘ k»‘l‘) L2 (2-3)

n m

is the total current density; q and m are the charge and mass of the particles.

Integrating Eq. (2-2) over a range of encrgy bounded by E, and L., we find




This current density must be supplied by a monoenergetic beam with an cnergy
between I-I‘ and L, to simulate the corresponding part of the distributed speetrum. The
energy of the beam can be chosen in a number of ways; a relatively simple choice is 1o

use the value found by averaging over the differential energy speetruin of the current

density. Y
OIS
| Rt Ot
i [ dit

v DI e (2-5)
- JCE, 1
3« 1 k)
Integration of Eq. (2-5) gives,
E
2 -
- J()l ke \© KT
B ) T (1 Pos ) e e
1 g ,L2 ‘1
£, (2-6)

Table 2-1 yives values for j,(lil,li.,)/jo and IZ(}ZI,Ez) for the case of a 10keV
AMaxwellian speetrum divided into four ranges of energy with boundaries at 0, 7.5, 15, and

30 keV,

TABLE 2-1. PIECEWISE REPRODUCTION OF MAXWELLIAN
SPECTRUM BY FOUR BEAMS

Maxwellian Temperature = 10 keV

Normalized
Fnerey Boundaries Current Density Beam nergy
el (KeV) HEED iy E(Ey, o) (keV)
0, 7.0 0.173 4.682
75,10 0.2649 11.20
15, 30 1.359 21.49
30 0.199 42.53




2.3 MOMENT-MATCIHING TECHNIQUES
2.3.1 Velocity Moments

A plasma cun be characterized by various averages of the velocity distributions of
its ronstituent particles. In general, the "velocity moments™ of a given dis ~ibution

function, f(v), arc defined by

i)
e e vk t(v) vidv

K

where the 4v™dv term represents an infinitesimal element in (isotropie) veloceity space.

The velocity moments, M an be related to phvsieal averages for several vaiues

o
K-
of k. For example, M()’ \I]. M, and MB are rclated, respeetively, to the averave number
d nsity <N>, particle {lux, <NI'>, pressure, <P, and energy flux, <EF -, of the given

particie tvpe in the plasma.

Mg = <Y> = n (2-3)
s ey M7
M, = 47 <NF> = n<v> = (-‘ = > (2-0
1 o
3 3 8 KTy |
M, == <P> = n ( > (2-10)
2 11 8 non
3/
8 N - RERE >-11)
Moo= 2 T -
‘!3 m <l 2 ! <‘1 I8 )
2
15 2 B kTY T
N = -, - e 2-12
A/o on 0" <zr m ) (2-12)
Y
M= D gl ,,(ﬁ B.,L) (2-13)
5 8 nom
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The average speed, < v = in Equation 2-9 is defined by

VD>

(2-14) ;

The expressions on the right-hand side of Lauations (2-8) - (2-13) are given for the case

of a Maxwelhian veloeity distribution,

3/ - T

YT
t(v) = n (7{2%{,);) e 2K (2-13)

where n, m, and T are respectively the number density, mass, and temperature of the

particles and k is Boitzmann's constant.

—re

Averace and RMS "Temperatures”

A useful method for eharaeterizing a non-Maxwellian plasma is to define effeetive ]
temperatures which are reliated to ratios of the veleity momems.k') The average and

RMS temperatures are siven by

| ar M, .
1 R (2-16)
AV k <o 3k
0
4
. M.
1stte w3 (2-17) "
s koJeli> Gl M :
1
[
The two temperatures are equal when the veloceity distribution is Maxwellian.
2052 Maonocenergetie Bewns to Mateh Veloeity Moments
A teehnique to simulate n plasina with a distributed veloeity <distribution is to
chioose the velocitios ad particle depsities of mononergetie beams so that their velocity :
moments nateh those of the plasma. Under these conditions, the average parameters of 3

the beain, sueh as nnber density, pressure, or cnergy flux, are cqual to those of the

plasmn component under simulation,

~19-




In general, a single beam can mateh two moments of the distributed speetrum, so
that two beams can mateh four moments, three beams, six moments, ete.  As discussed
in Section 2.3.4, it is also possible to overspeeify the problem and use more than the

minimum number of Heams to mateh a riven number of veloeity moments.

Single Beam Energy

A monoenergetic beam can mateh two moments according to the simultaneous

equations,
T j = M
nb.!) AIJ
« G7) (2-18)
n,v, o= M
b b k

where n,_and v, are the density and velocity of the beam particles.

b b

For example, when the zeroth (number density) and sccond (pressure) moments are

chosen,
ﬂb =N
1/2 e
\ ,
Y 2R T (2-19)
Vb T\ R
0 .
or, in terms, of beam energy, Eb,
S}
By = 2 K Tay (2-20)

If the first (number flux) and third {energy flux) moments are used,

1 ; 1/2
1 m /

M 1/2 4 A 10 Ny
v, = .3,> / ~.< k_qn_rg:: ! (2-21)
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Two team Eneraies

The densities and veloeit o5 of two monochergetie beams ean be found to mateh
the zeroth through third velocity moments of the distributed spectrum by solving four

simultaneous equations:

z.1 LTI I
i t o>
(2-23)
, ) 3
LRI LI
4 Y] AN
i 3 s
"y bt nowv> 1 i
: . n RS

where Hpe Moy vy and v, are the densities and veloeities of the beams, and the veloeity
moments of the distributed speetrum have been replaced by relations (2-14), (2-16), and

(2170 Voltymmnn's constant, k, has been taken to be unity.

[t s shown in Appendix \ that the velocities and densities of the monocnergetic

bearis eon be found analvtieally.

ST - 3T
o ) e r
: 6o, - 7 m ey ( ke A
I IR R S SO D eun D) (2-24)
- [FORI [FOREN AV :
.
. [‘ e N ’ i
PR AV
AV )
m a<v>
14—




1/2
m <V> 27 128
Vi G - 16 {‘ HEERE 83) } (2-26)

The beam densities and energies are then found to be

Yy

n, = 0.25. n

n, = 0.613 n (2-27)

2 (2-28)

Three Beam Enercies

Six moments of the distributed spectrum can be used Lo compute the densities and
velocities of thrce monoenergetic beams. No analytical solutions have been found for
this case, but iterative techniques can be uscd to find solutions of the set of six
simultaneous, nonlinear equations.

As discussed in Appendix B, the beam veloeities and densities can be found in

terms of the average speed and density of the plasma particles. For the case of a
Maxwellian plasma with temperature, T, the beam deusities and energies are

3
]

[0.087, 0.538, 0.325])
(2-29)

n
I

(4.931, 1.657, 0.303} 7

P




Different values will be found for other types of veloeity distribution funeiions,
but the method used to compute the Maxwellian results is gencral for all realistie

spectral shapes.

203 Pwo-Maxwellian Plasmas

Garrett showed that o two-Maxwellian fit is often o good representation of plasnia
distribution  functions  measured  during  geomagnetic subslorms.(S) The density and
temperature of each Maxwellian component ¢un be found from four velocity moments of
the measured speetrum. 1t is possible, in principle, to find three-Maxwellian fits which
mateh six moments, although the effects of errors in measurement of the plasma
spectrun become inereasingly exsggerated when computing the high-order moments., It
should ulsn be possible Lo find multiple-Maxwellian least-square fits directly from the

measured distribution “unetions without computing the velocity moments of the data.

ST o Meroy
Sinete Pewan Fneroy

A rwvo-Anxwellan distribution has average and RAS temperatures given by

T “11 AN
% ny b, (2-30)
. 3/) *,/.’\
II' | | 4+ n AN
Lo VAR g (2-31)
l\] ! ] Yon )! \

wherpe Nye M 'I'l. and P are the rospeetive densities and temperatures of the two

components of the speetran,

A ingdle monoonersetie beam ean mateh two veloeity moments of the disteiinitoed
spectrnmoalats depat and eneroy nee chosen necordineg to Egs, {2-14) - (2-22) above, For
examplif the beam density o equat to the total plasna density, ot g, and 1ts enerny

-~

372 1y then the zeroth and second veloeity moments of the two=Maxwellian plasma

‘

and the voonoenergetic bonm ure cqul,




Two Beam Encrgies

Two methods exist for matehigr the veloety moments of a two-Maoxwelfiag
distribution by two monoenergetic heams. Fiest, the cnerpy and density of cach beati
can be chosen individually to mateh two moments of cach of the Maxwellian components
of the spectrum. In this case, bgs. (2-19)-(2-22) would he emyloyed along with the

densitios and temperatures of the two-Maxwellian fit.

The sccond upprouch is to use the average and RMS temperatures of the
two-Maxwellian fit. Eqgs. (2-30) and (2-31), and to calculate the beam veloeities and
densities from Eqgs. (2-24) and (2-25). In both cases, as many as four moments of the
two-)Maxwellian distribution function can be muatehed by two moroenergetic beams. In
practical situations, phvsieal considerations would be required to make u choice between

the two methods of matehing veloeity moments.

Three or More Beam Enersies

The moments of a two-Maxwellinan distribution funetion can be matcehed in several]
different eombinations with inultiple monocnergetic beams. As 11 the two-beam case,
each Maxwellian component of the plasma can have one or mor - beams assipzned W it
which individually mateh veloeity moments,  For six-moment hiatehine, three beam
eneraies and densitivs eould be selected using Eq. (2-29) for cach —omponent, ard a total
of six heam enercics would be required to simulate the two-Maxwellian plasma. As
mentioned above, the computed values of the zeroth through fifth moment of the full
speetriin ean alco be used direetly to find three beam encrgies and densities through the

Herative minimization procedure deseribed in Appendix B.

2.3, Arbitrarily Assiened Beam Energies

The veloeity moments of 4 measured distribution function can also be matehed by
monocnerTatic henms whose  veloejtios are  chosen arbitraridy. As an example, four

monocenergetie beans enn mateh Tour veloeity moment.:

N S ¥ L = M
ny n ny Y, 0
v,.n, + v o1 + n.+
1 RN R /A
) ) 9 o
v.'n, v "n, kv "n, v T M
1 1 2 2 33 T )
3 ) 3 i (2 37
+ : t v [V M LA
J,‘ 0 v, O, . ny VM |




When the four beam veloeities are fixed, then it is only a muatter of solving a sct
of linear simultancous equations for the beam densities, ny throug! Hye it should be
pointed st that not all combinations of beam velocity mav be chosen for vy through Ve
beenuse negative, and therefore unphysical, solutions for the bean: densities can be

obtatnec in some eases.

Tible 2-2 gives the densities caleulated for three, four, anc five beums us »
funetion of preassigned beam energies. The beam energies and densities are normalized
to the temperature and density of a Maxwellian distribution, and the velocity moments
uscd for the ealeulations are given by the right-hand side of Egs. (2-8)-(2-12). The first
three-beam sotution in Table 2-2 is 4 checek of the six-moment solution, £q. (2-29), found

by the iterative proced ire discussed tn Seetion 2.3.2.

[ble 2-2 andicates that, although the veloeity moments of the monoenergetic
beams nre matehed, te speetral shape of the beam solutions is generally not similar to
that of 1 Maxvwellian, For a simulation faeility one would intuitively prefer an envelope
of the beam density vhich roughly approximates the Maxwellian distribution, Eq. 2-1.
The low and neoative values of density found for some combinations of beam energy
appurently result frony foreing the beam  densities alone to bring about the mateh
between the veloeity noments, The unphvsieal and intuitively unsatis{ving results using
arbitear v oasstined beom enerries east doubt on the usefulness of this approach to mateh

velocity moments of destribtted speetra,

-18 -
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TABLE 2-2. PARTICLE DENSITIES FOR PREASSIINED
BEAM ENERGIES

No. of
Beams E;/kT nj/n
0.303 1.325
3 1.657 (.588
1.931 0.087
0.5 0.521
3 2.0 0.339
4.0 0.140
0.4 0.282
4 0.8 0.333
1.6 0.069
3.2 1.316
0.5 0.518
1.5 0.156
A 2.5 0.134
3.5 0.192
0.2 0.198 B
0.6 0.061 !
5 1.3 0.548 ;!
1.0 0.127 ;
5.0 1.066 !
4
0.2 6.179
0.6 0.162 ‘
5 1.5 0.502 .
3.0 0.084 i
5.0 0.071 |




SECTION 3
SPACECRAFT CHARGING CALCULATIONS

b RVTIONALL

The previons section presented some  mathematieal techniques to relate the
cluaraetersties of undi urbed plasmas to those of onre or more monoenergetic beams of
chivoed tartieles, 1 vas assumed that the plasma or beams produced u flux of particles
at a iven suricee, although no interactions belween the particles and the surface were

constdored,

in this ~ecetion we shall compare the eleetrostatie charging produced by plasmas
and varions combinaticns of monoenergetie eleetron and ion beams using 1 model which
accounts for several of the interactions between the incident charrea particles and a
"tepteal” spoceeraft. Phe spacceeraft eharging ealeulations are, of course, only one of
several possible approachies for making o qualitative eomparison of the effects of
plasmas and combinat:ons of monoencrsetic beams. A spaceeraft simulation facility,
however, will devaote @ considerable amount of its effort to the study of the effects of

clectrostatio edvirome, and this choiee for comparison ean be justified on these grounds.

3.0 CHARGING MOD L

1o spaceeralt chavring model developed by (‘.urrvtt(m caleuliates the equilibrium
potontiogd of g surface which reccives isotropie fluxes of cleetrons and ions with arbitrary
encres speetra and whieh loses ehargre by secondary  eleetron emission,  eleetron
hacek ceaitor, and photoeleetrie emission. The model has been pather successful in
prodietn o e aotential of 0 hieh-altitnde satellites  instrumented  to measure  the

am

differential cner oy spestra of eleetrons and protons in geomagnetic substorm plasmas .

e moded ascames that the spacceraft ean be represented  as a spherieal
Lo probe inoa plasmn whose Debye Tengrth s ueh greater than the dimensions of
the quoto o bhe ener o speetra ol the plasieae eleetrons and ions are divided into 62
cnetey Mansy e the flux of eharred partieles to the surface ealeulated, taking into
aecount  the  clectra titie potentinl of  the satellite and  conservation  of  mass,
Aovieethoang two Maxcellinng and achiteary . speeten observed  from  the  spacceeraft's

teteume ataton ean be Jonded anto the energry bins.,




Secondary electron emission from eleetron and ion bombardment and clectron
backseatter ure calculated as a funetion of the incident partiele flux and the measured
energy dependence of the sccondary emission and backscatter coefficients of aluminum.
Corrections for the heterogeneous surface of an actual spaceeraft are made by small
adjustments of these coefficients to bring the caleulated potentiul of the satellite equal
to its measured value when the satellite is in "typieal™ plasma conditions. Charge losses

by photoemission are included by an empirieal formula.

We have modified the model in two ways. First, the time dependence of charging
was included by representing the satellite as an isolated spherical eapaeitor. The amount
of charge gained and lost by the surface is calculated for short increments of time in
which the potential is held constant. The net gain of charge is then used to compute the
new value of potential to be used during the following time inerement. This procedure is
repeated until the potential of the model satellite does not vary in succeeding increments

of time.

The second modification was used only for potential caleulations of the model
when irradiated by monoenergetie, initially parallel beams of noninteracting charged ’
particles. It accounts for the electrostatic defleetion of the beams in the eleetrie field v
of the charged body which attracts oppositely charged particles and repels partieles of

the same sign.

The total current to a surface of arbitrary shape in a parallel beam is simply the
product of the current density, j, and the geometrie cross scetion, A, in a plane
perpendicular to the current density vector. If the initially parallel beam is deflected by
a symmetrical potential well, the deflection can be represented as an "effeetive"
cross-sectional area which depends on the strength of the field and the kinetie energy
and charge of the particles. It is shown in Appendix € that the effective area of a .

spherieal conductor of radius R is,

2 a¢;
Aeff = 7R 1 - -I—(—{—Er (‘“p:s < |q[.:l)

A =0 g~ lae])

(3-1)




where Y, is the (signed) potential of the sphere, und q and E are the (signed) eharge and

initial kinetie encrgy of the incident charged particles.

For the charging calculations, the eleetron and ion current to the model satellite
was set equal to the sum of the currents from the monoenergetic beams, each of which

was given by
YT A (3-2)

where ji is the unperturbed current density of the ith beam with energy Ei'

The seccondary cmission current from electron and ion bombardment and the

electron backseattering were calceulated as a function of the energy of the incident

particles by the same subroutines used by Garrett's model for distributed energy spectra.

No photoemission was included in the spaceeraft charging calculations in order to

stmplify comparison of the results between monoenergetic beams and distributed spectra.

3.3 RESULTS

The spaceeraft charging model was used to calculate the potential of a spherical
satelhite with a radius of 1 meter and initial potential of zero. The charging by plasmas
with several different cleetron and ion temperatures were compared to charging oy
henims whose energies and current densities were sefeeted by the methods diseussed in
Section 2. Table 3-1 presents the parameters of some of the Maxwellian plasmas and

beams and for the charging ealeulations.

3.0 Singde Monoenergetie Beams nd Maxweltian Plasmas

Charging by monoenergetie eleetron and proton beams and Maxwellian plasma was

computed for several beam energies and plasma temperatures. The current densities and
cherines weee celeeted so that the fisst (number flux) and thicd (energy flux) veloeity
momente of  the monoenergetic bemns matehed  those of  the Maxwelian plasmas,
Fauntions (2 21) and (2-22).  For this case, the beamn cnergies were twice the

corresponding plasma tempoerature,




TABLE 3-1. SPACECRAFT CHARGING BY MANWELLIAN
PLASMAS AND MONOENERGETIC BEAMS

PLASMA
Eleetrons: T =10KkeV,j_ - 1.0n \/('m2
¢ 5 e ROV Jo o B ) @ - -12.5kV
lons: T, = 10 keV, j; = 0.023 nA/em “d
.. o . A v 2
Eleetrons: lC = 10 keV, Jo 7 1.0 nA/em ) W(‘( C 112 KV
lons: T, = 20 keV, j; = 0.033 nA/em "
BEAMS
1 Electron: E =20 keV
€ 2
], =nAfem I ER R
1 lon: F. =20 keV q
ji =0.023 nA/cm2
1 Electron: 1= 20 keV
¢ 2
j, = 1L0nA/em @ =-12.9 KV
1 lon: Vi = 40 keV €4
9
Ji = 0.033 nA/em”
2 Eleetron: I, = 5.69 keV
el 9
i 5 =0.41 nA/em
02
1. o = 30.1 keV
c2 9
] = [C »
Jog = 0-59 nAjem o = 190 KV

2 lon: I'.il = 5.69 keV
i, = 0.0096 nA/(tm2

Ut

Co ,
}'i‘Z 30.1 keV )
j!_ = 0.014 nA/em”

2
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TABLLE 3-1. {(Coneluded)

3 Electron: Eol = 3.03 keV
Jor = 0.16 nA/em
B, = 16.6 keV

c2 o
jc" = 0.67 nA/em”
ko, = 49.6 keV

el
Jo3 - (.17

3 lon: 13“ = 3.03 keV

jil - 0.0037 n:\/('ml
“i“ < 16057 keV

9
Jio 0006 nAem”
| 49,06 kel

i

Y3

f)
- 0.0010 nA/em’

S —
%Peq =-11.9 kV




where noand T are the deasity and teniperature of the Maxwellian plasma component,
and m are the charge and mass of the plasma and beam partiel s Gesumed the sanme

species), and lib and jb arc the undisturbed energy and current density of the beam.

Figure 3-1 shows the charging of the model satellite wit a radius of 1 meter
under ireadiation by single 20 keV elecetron and proton beamns and by oo hvdrogen plasina in
which the electron and ion temperatures are 10 keV. It can be ween that the charsing
rate  and equilibrinm  potential of  the satellite is higher when  exposed to the
monoenergetic beains, aithough some differences are to be exjected beeause of the
important influence of the secondary eleetron emission coeffic ents on the sharging

process.

The equilibrium potentials found from caleulations of clarging by Maxwellian
plasma and beams with energics and current depsities given by Equuation (3-3) are
compared in Figure 3-2. The correspondence is surprisingly good, considering the
crudeness of simulating a Maxwellian velocity distribution by o single monoenergetic

beam.

Figure 3-3 shows ealculations of charging by a Maxwellian plasma with an eleetren
temperature of 10 keV and an ion {(proton) temperature of 20 keV. Charring by eleetron
f p g b
beams with an energy of 20 keV and proton beams of 40 keV ana current densities for
each component given by Equation (3-3) are also shown. In this case, the eouilibrivm
potential in the Maxwelliun plasma is somewhat higher than under irradiation by the

heans.

3.3.2 Two Monoenergetic Beams and Maxwellian Plasma

The cnercies and densities required for two beams to mateh four velocity
mornents of a NMaxwellian plasma are given in Fguations (2-27) and (2-28). We have

ceateulated the charcing by two eleetron and proton beams and in Maxwellian plasmas.,

Fimure 3-4 shows the resulis of the emculations for eleetron and ion beams with
energies of 5,60 keV oand 3001 keV and for o Maxwellizn plasma with eleetron and jon
temperatures of 10 keV. The equilibrium potential of the satellite model is more than 2
kV greater for charging by the beams than by the plasma, althouth the charging rate is

ubout equal for both cases for 0 to 0.05 seeotuds,

Y
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3.2.%  Thiece Monoenercetie Beams aind Maxwellian Plasma

Chareing by three monoenersetie electron and three monoenerreiie eleetron and
jon beans whose veloeity moments  mateh sixo moments of o Maswveellan plasma was
computed using the soaeceraft charging model. The beam energios anst curr nts acre
fomnd from Equations (2-29) to mateh the veloeity momcents of s Moovwelhan hydre,en

plosma witinan eleetron ana jon temperature ol 10 kKeV.

The results of the charging eafeulations are shown in Fiqure 5-0. Trere overy
elose worecment botween the eharging rates and cquilibrium potentials for both the

three=be anoand Maxwellian plasma cases.

3.0 P o Bonmms and Maxwellian Plasme

1o ehar zing of the satellite mode]l was ealeulated using bewms chosen to cimulate
the it sentint eneroy speetrum of the current density of a Maxwellian plasma. As
diseris<ee in Seetion 2.2 the energy distribution was broken into four parts and the
ererent density and average energy of each purt computed, using Fauations {2-4) and

(2-5),

Fienre 546 shows the charvims using the four-beam solution given in Table 2-1

compared with chareics by a Maxwellian plasma witiy cleetron and 1n temperatures of
10 KeV, I is womewhat suepeising that the equilibrium potential foune with four eleetron
nodd o e e ehosen to mibmie the speetral shape of the Maxwellian plasina is not as

cloase s owath other eo e with fewer hoeams,

3000 Deams aned Two-Maswellinn Plasma

A deeneed an Seetion 003, the veloeity distribution of a pon-Maxwellian plasma
ean Le soprosiimatod byoa two-Maswellian distribution funetion, eacli component of the
distribation beme clipaelorized by oo temperature and g partiele density. We have
compited the eharging of the <atellite model in i plasma with a two-ilaxwellian electron
ditethnion tunetion and dngle-\axwellian jons. The two eleetron components have
teoerituees of 10 SeV o oand 200 ked, and  densities of 3.0 ('m_3 and 0,43 cm-:;.
recpeeticely, The proton plasma has a temperature of 10 keVoand has a number density
equal to the total efeetron density.

We have eompared the eharmng by the two-Maxwellian plasma (o that of several
combintions of moneenersetio heams, Table 3-2 shows the beam energies, current

densitios, and resultant equilibrinm potentinl of the satellite model,
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‘ TARLE 3-2. SPACECRAIT CHARGING BY TWO-MAXWELLIAN

PLASMA AND MONOENERGETIC BEAMS
PLASVMA
Ileetrons: 'lel = 10 keV, el ~ 0.8 n/\/(-m
30 keV,j o, =0.2 nA/e m ¥, MERIENY
1‘7 12.975%v il
(I‘ )RMS 14.0 keV )
lons: T =10 keV, _] = 0.021 nA/em
BEAMS
1 Electron By = 2T )RMS = 28.0 keV v(_q = -26.8 kV
1 Electron I"e = 3/2 (T e)‘,\v -‘ 18.8 keV
Jo = 1.1 nA/em R ER RS
1 Ion E =3/2 T, =15 keV !
o 2
j; = 0.023 nA/em |
1 Flectron Eq = 2T )RMS 28.0 koV
Je = 1.0 nA/em 9. 198KV
1 Ion =2 T, =20 keV ‘
] =0. ()"1 nA/cm
B > - m 9
2 Eleetron [‘el 2 lel ,Ozl\ eV
Jop ” 0.8 nA/em
E,=2 ’l‘ = 60 keV
e2 2 .
i 2 = 0.2 n/\/('m \P(_q = -18.2 k\ ;
1 lon I l =20 LoV .
] = 0. 0“1 n/\/(‘m
2 Flectron Ee] =7.92 keV, j ol = 0.54 nA/cm
2 \ - . !
},02 =509 keV, j o= 0. 46 nA/c m 0. = -19.2 KV !

2 Ton E., = 5.69 keV, j“ = 0.0096 nA/em?> A

il o
F‘iz = 30.07 keV = 0.014 nA/em”




e cguibyhriam potential found with o single eleetron beam o prosented o show
the cifect ol cemoving tons Trom the simulation. Without the 1on component, the
sitelhite model charses untl the sccondary efectron cimisston and backeeatter are equal
to the itedeont <leetron flux, The equilibrium potential is c¢lose to tiat of the elecetron
beam beeause the sceondary electron cnussion coefficient peaks at o cnergy of w Tew
handred leetronvolt ~("‘) and is smadlad hcher energies,

The sinole-eleetron and singgfe-ion beane energies anc currents i aoie 3-20 wep
chosen to muateh two veloeity nmoments ot the two-Maxweinan plasiias as diseussed i
Seetion 2,320, The two-eleetron and single-ton beam energies and currents mateh the
first and third velocity moments (particle and encrgry flux) of cuch component of the

distributicn funetions,

The enersies and currents of the two-eleetron and two-jon beam case were found,
using Lovations (2-24) and (2-203)0 to mateh four velocity moments of the distribution

functions, ba~ed on the average and RMS temperatures of the plasima partieles.

The diserenaneies between the enleplntions  of  equilibrium potential in the
two-Vaxvw cllian plaster and in monocnergetiec bheams are somowhat greater than those
found witic o singte Maxwellian plasma. The difference may be caused by the tigher
temperature component of the eleetron plasmn, which skews the seeond and thire
veloeity moments of the eleetron distribution funetion. The hich-energy eleetron beams
required to mateh these veloeity moments apparently have o strop influence on the

cauilihroin potential of the model.

01 DISCUSSHON

The calettations give o quaiitative idea of the charging which would bhe observed
oo v ceerart testeer faeility in which motiocenersetie beams were used o simulate
spoce plasme. waith distribated enceey speetra. As expeeted, the equilibroam potential of
the spaceeratt ander test, and therefore the eharee density on its surface, s only o
function f the eleetron and jon beiaom enercios and currents. An oimportant result,
however, s the observation that the monoenereetic heams ean be chosen to mnteh
seversl voeloeity momonts of o distmbuted speetrum and, at the same tone, produce the
sine etaree density on the spaeceraft. Thusy surface phenomena whieh are anflueneed,
for esappbe, by enerereye Flux s well as eharee denstty ean be investigated moa Inhoaratory

facility with o reresonnble degree of contirdence in the simalation fidelity.,
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It should be made clear that the charging model used here is a very simple one and
does not account for the complex geometry or surface details of a read spacceeralt. More
complicated chargine codes exist, however, which could be used to make more detaled
comparisons of spacecraft charging by monoenergetic beams and space plasmus.  ‘The
NASCAP code(”), for example, is probably the most ambitious attempt to represent the
geometrical and surface configuration of real satellites in the  environment  of
geosynchronous orbit.  Modifieations of NASCAP would be required to caleulate the
charging of a three-dimensional objeet under ircadiation by beams of  charged

(12)

particles, but it is likely that NASCAP would be o useful tool for comparing the

conditions of laboratory simulation to thosc of space.




SECTION
SUMMARY AND RECOMMENDATIONS

4.1 SUMMARY

We have examined mathematieal techniques to choose the cnergy and current
density of monoenergetie beams to simulate the distributed speetra of puismas in space.
In the first approaceh, the differential current density specetrum of the plisma was divided
into o number of enerpy bands. ‘Fhe beam energy and current were calculated for each
band to provide ot piceewise reproduetion of the distributed speetrum. This technique is
probabiy the most intuitively satisfyving when a large number of beams with different
cnereies ean be used for the simulation beeause the envelope of the veloeity distribution

of the beomes ean elosely mimie that of the plasma.

The seeond general approach was to choose  the beam energies and  current
densitios to mateh the veloeity moments ol the plasma distribution funetion.  The
veloeity moments are averages related to physieal quantitios such as partiele density,
fiux, pressare, and enerey fiux, and have been used extensively to characterize the
menared propertios of plasmas in spaces We have found expressions for beam energies
and densitios in terms of the plasma properties sueh as the average and RMS

"temperstare” o density, and averase veloeity,  Combinations of one, two, and three
bowe wore found to mateh two to sin veloeity moments of Maxwellian distributions.
he sooee teehnigques also ean be applied to other speetral shapes, and they were used to
et twoSaxwellian distributions. Unphysieal orintuitively  unsatisfyving  results
wers dound when the problem was overspeceified by arbitearily seleceting beam energies

P depsatie s enlewlated 1o o mateh aoset of veloeity moments of a distributed

Ea et

RIGTAIER RN FRETIN

A vaple compiutational model was used to compare the charsing of a spneeeratt
by phivsner with distributed speeten and by monoencrgetic beams,  The plasmas were
seanbar to those found mobieh orbits during peomagnetie substorms, with multikilovolt
toaperatures and a few partieles per cubie centimeter, These ealentations were made to
i a0 gqualitative comparison of the approsches for ehoosing monoenergetie beams to

stnainte Spoee plasmaes,

Mthoneh no el compart on was not expected when onldy a few beams were used
to cumnbate the dedrshinted spectram of o plaoann, some combinations of beams gave
snlar cheepane eated copnhibeinm potentialy The equilibrinm potentials found usinge

brevn o mateh veloedty meeneats of 0 ow twosMaswelhan plasma generally
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were within a few Kilovolts of churging by the distributed speetrum, but showed more
divergenee than the simulations of simple Maxwellian plasmas. The spaeeeraft charrine
model cannot be u~ed as the only coterion to evaluate the fidelity of simulation of
given plasma envircnment, beeause physieal considerations other than the ehareine pate

and eaquilibrium pot: ntial must atso be considered in this evaluation.

4.2 RECOMMENDNTIONS

A number oY characteristies of space plasmas have not been included in this
analysis which may be important for certain simulation situations. The most evident of
these is the observed anisotropy of the veloeity distributions of partieles in space.
Plasina drifts are common as well as distribntions which show strong correlations with
the dircetion of the magnetie ficld in space.  Plasmas are often charsceterized as
"drifting Maxwellion”, "bi-Maxwellian™ (temperature parallel to the magnetie field
different from perpendicular), or "loss cone’ distributions {very few particles in a cone in
velocity spavce). These anisotropics can be important for interactions with spaceeraft

with large oriented surfaces or cavities alivned with the direeted plasma flux.

We recommend that the present work be extended to aceount for anisotropies in
the velocity distributions in space. A number of  teehniques  exist to deseribe
mathematically the anisotropics, such as expressing the distribution funcetion in terms of
spherieal harmonies. Some of these techniques can probably be used to provide objective
relationships between plasma parameters and the placcement of eleetron and on sourees

in a simulation facility.

Except for the calculations of average charging using the simple spacecraft
charging model, we have not considered the interactions between the plasma particles
and the surface of 4 spaceeraft. In fact, the behavior of a dicleetrie material irradiated
by eleetrons and jons depends to a large degree on the profile of charged particles
trapped in the upper atomie layers of the surface. This profile is a tunetion of the
material, partiele species, energy disteibution, and nngle of incidence on the surface. An

isotropic plasma with a distributed energy speetrum  will produce o very different

charging profile from that of & monoenergetie beam.




We recommend that further theoretieal and computational studies be pertornes
to thetrate these ditferencees and provide yudetines for the seleetion o monoenerretie
beams to reproduce the echarging effeets from plasmas in typical spacceraft malerinle, A
number  of  computer codes  exist whieh, through Monte Carlo routines, follow the
teajectarios of "tvpieal energelie particles in materials. Theyv acecount for deflections
by clastie and inelastie collisions and energy losses by the same processes and b
radiation. The cquilibrium protile of charge 1 an insulating materiat can ve founa Gy
followiner the trajectories of a few thousand partieles and simple miodels of ehargec
piartiecle mobility in the material. The codes can aeccept a variety of input conditions,
ineluding Jdisteibutions of particle veloeities and ineident angles, and can be run on a

moderats size computer,

Caleulations oif the interactions of charged particles with soaeeeraft materials
stould be o coupied with experimentation to test their validity and verify results and
predictior. We reeommend that o small-seale experimental program be undertaken to

decomphsh these ends, Samples of spaeeeraft material should be <imultancous irradintoed

by eleetrons of more than one energy, ions (preferably protons) and light with o strong

compone it th the ereme ultraviolet, The experiments should be performed under very

vood vaenun conditions to avord surfaee contamination by oil or oter materials which
are atvpiesi of the sones environment.
Sonve expertuentation of this type has already bheen reported by the spacecraft

(eor., 3)

charng cerentifie comnunity. However, the materials were usuaily irradiated

by o sincde cleetron beam, and no attempt was made to correlite surface phenomena
with theoretieal analvsise The faet that no ion beams were included in the tests may :also
strondy modify the surface internetions in comparison  with those in the plasma

onvironent of <iee.
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APPENTIHE A

TWO BEAM SOLUTION TO MATCH SOUR VELOCETY v OVENTS

artett nas o shown tor o sitgilar proble s that the sot of 1ondinens <pe ey

ectations, Vg (VoL can be reduced to o sincle a raoratie couation of © e fope,

(A1)

where A, B, and T are functions of the richt-hacd side of Easo (1T) Fop tie e lon of

caleulatine the voloeitios and densitios of nonoencrrotie beams, we  gue et

(A-2)
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The beam veloeities nre found Lo be

T 3 Tav

whore vy (v} corees onds ta Bie (=) sign of Eq. -3
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The hemm densitios corresponditgr to the veloeities are found by substitution,

(A-1)
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APPENDIX B
THREE-BEAM SOLUTION TO MATCH SIN VELOCITY MOATENTS

To find a three-benm solution to matesh six velocity mome ats of o Cistributed
spectrum, six nonlincar simultancous equations mnst be solved. Those equation, are of

the form

5

3 .
}: X “I'kl-A] M, (-1
k=1 j S

0 )

th

where n, and v, are the densities and veloeities of the beuams, and “j represeats the o

Kk k
veloeity moment of the distributed speetrum.

Although any physically reasonable distribution funetion ean be utitizeo, we used

the six velocity moments of a Maxwellian distribution, Lgs. (2}-(7Y, to find < lutions of

Eq. (B-1). The beam densities and veloeities were normalized by ehar sing varial foes,




Eq: (8-3) cun be solved by aniterative procedure that minimizes the expression
represented by the wbsolute sum of Egs. B-3. Triual solutions are substituted into a
comauter program  whieh then converges on the best solution throuph un iterative

(Hh-1

proeess,
The only solutions of Fgs. (B-3) found by the iterative routine were permutations

of the foltowinr:

Couvye) = (19070, 1.146085, 0.4881)

. (B-1)
(a, b,y - (000506, 00879, 0.3259)
The encreies of the beams were found from
./. -\
B (B3-5)
1 1

and shinil a expressions for £, and L.

2 37,

B-1. e Bevitton, Dot Reduetion and Error Analvsis for the Phvsical Scienees

(MieCraw-Hill ook Company, New York, 1969), Ch. 11.
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APPENDIX ¢
EFFECTIVE AREA OF SPHERICAL CONDUCTOR

We shall assume that a sphere of radius R is in a aniform, parallel beany of
non-interacting charged particles of mass, m, and (signed) eharge, . If tne sphere s

uncharged, the current to the sphere is given by,
0) = TR’j (-
1(0) = wR io c-1)

where jO is the current densityv of the undisturbed beiim,

When the object charges, the particle trajectories of the beam are defleeted by
the statie clectric field around the sphere. The effective area of the sphere is then the
circular area whose radius is the "impact parameter” of the beam particles that just

graze the surface of the sphere.
Flementary texts of eclascieal mechanies show that the impaet parameter, b, is
related to the distance of closest approach, a, according to the relation,

1) )
: SR AT
Yo 2 ! (¢-2)

9
The initial kinetic energy of the particles is l/2mv(‘; and  (#) is the electrostatice
potential at the distance of closest approach to the sphere. Setting the kine tie cneragv

equal to Iq\"0|, a = R, the effecti e arca of the sphere is then,

A e - (- 2y (e <)) (-3

(9]

When the potential of the sphere is greater than the initial acceelerating voltage of

like=signed particles, the particles do not reach the surface,

Bgg o 0 (’1 L I'iVOI) (-3t
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